





# **Nutrient Recovery for AD Systems**

Lessons from Agro-Industrial Nutrient Management Experiences

Thomas H. Probst, P.E. – The Probst Group, LLC

Seventh AgSTAR National Conference Indianapolis, IN June 12, 2013



#### Multi User, Industrial Wastewater Management Concept

(Industrial Wastewater Treatment Plant – IWTP)

- Multi Corporation, 3 Factory, Cooperative Project
- Complete WW Solution Advanced Nutrient Removal
- Energy Value Potential 1.7 megawatt
- WW Management Removed from Factory Activities
- IWTP More Capabilities/Capacity Than Practical For a Single Factory
- Farm Interface for Nutrient & Irrigation

### **DRIVERS**

- City Cost of Service + 20 Year Commitment
- Capacity Restrictions (even with pre-treatment)
- H.S. WW's Not Compatible with City's New POTW Solution
- Factory Expansion & Product Diversity Constrained
- Factory Competitiveness Diminished

# Multi – User Concept

#### THREE FACTORIES to JOINT IWTP



#### Separate Segregated & Diverted HS Management With AD

- Higher Strength WW's (HS) More Efficiently Treated
  - Anaerobic Biological Treatment MBR
  - Pellet Reactor P Removal
- Waste to Energy Opportunity Exploited
- Normal Strength WW's (NS) + Anaerobic Effluent Aerobically Treated
- Exceptional Load & Flow Range Capability Created
- Unit Processes & Materials of Construction Specific to the Industry Demands



# **NS & HS Management At Factory Sites**



# **Funding Opportunities**

Incentives Available to Industries vs. Municipalities

- Grant in Lieu of Energy Production Tax Credits
- NMTC
- Green Energy Power Purchase Agreement

# **Unique IWTP Process Configuration**

#### <u>Anearobic</u>

Waste HS Characteristics/Effluent Goals Drive Process

Drive

- H.S. WW's Treated in Complete Mix Anaerobic Digesters Followed by Fluidized Bed Phosphorus Pellet Reactors
- Pretreated H.S. + NS WW's to Aerobic Treatment

#### **Aerobic**

Phosphorus & BOD Loads + Effluent Limits Drive Design

- P WQBEL @ 0.075 mg/L
- BOD @ 213 lbs./Day <20 mg/L @ Design Flow</li>



# Influent Character & Effluent Goals Drive Unique Solutions



#### **ANAEROBIC PRE-TREATMENT**



# P-Limit Drives Process Design Soils/Site Availability Dictate Physical Configuration



# **ANAEROBIC INFLUENT**

#### **Anaerobic Influent Characteristics**

| Parameter               | Up to       | Average     |
|-------------------------|-------------|-------------|
| Flow                    | 0.204 MGD   | 0.134 MGD   |
| COD                     | 57,200 mg/L | 39,735 mg/L |
| <b>Total Phosphorus</b> | 544 mg/L    | 356 mg/L    |
|                         |             |             |

# **ANAEROBIC EFFLUENT**

| Parameter               | Up to     | Average   |           |
|-------------------------|-----------|-----------|-----------|
|                         |           | mg/L      | % Removal |
| COD                     | 1640 mg/L | 313 mg/L  | 99.2%     |
| <b>Total Phosphorus</b> | 150 mg/L  | 58.4 mg/L | 83.6%     |

## **AEROBIC INFLUENT**

#### **Aerobic Secondary Treatment**

| Parameter               | Up to      | Average    |
|-------------------------|------------|------------|
| Flow                    | 1.083 MGD  | 0.904 MGD  |
| COD                     | 3,585 mg/L | 1,843 mg/L |
| <b>Total Phosphorus</b> | 39 mg/L    | 20 mg/L    |

# **AEROBIC EFFLUENT**

#### **Aerobic Effluent**

| Parameter               | Up to     | Averaging |
|-------------------------|-----------|-----------|
| Flow                    | 1.22 MGD  | 1.01 MGD  |
| COD                     | 57.6 mg/L | 21.2 mg/L |
| <b>Total Phosphorus</b> | 1.8 mg/L  | 0.3 mg/L  |

# Unit Process Design Configured To Accommodate Anaerobic – Aerobic Process Needs

- Anaerobic Effluent High Ammonia Concentration
- Aerobic Process Accommodations
  - Nitrification at aerations basins (ABs)
  - Denitrification at selector/denitrification tank ahead of the ABs
  - Mix only capabilities for denitrification in ABs
- Solids-Liquid Separation Denitrification to Manage Clarifier
  - Custom clarifier design
  - DAF clarifier effluent polishing

## Bio-gas & Generation System Design to Maximize Energy Production/Enterprise Revenue



#### **SUMMARY – CONCEPT**

#### **Industry Supported By Joint IWTP**

- Capacity/Capabilities
- Flexibility
- Sustainability
- Expandable

#### **SUMMARY - Uniquely Configured IWTP**

- Factory H.S. Segregation, Diversion & Equalization
  - Powerful management tool for IWTP
  - Spill detection/control/minimization
  - Office site accumulation/equalization
- Separate H.S. Pre-Treatment
  - Gross COD & nutrient removal
  - Wide range of turn up/turn down capability
  - Cost effective treatment of highly concentrated WW's
  - Revenue from Power
- Robust Aerobic w/P Removal Enhancements



# **Exceeding Effluent Limit Expectations**



# Thank You! Questions?